Minimal Equational Theories for Quantum Circuits

Alexandre Clément*, Noé Delorme[†], Simon Perdrix[†]

*Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France [†]Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

This is a minimal complete equational theory for quantum circuits.

$$(S_{2\pi}) (S_{2\pi}) ($$

Quantum circuits as a graphical language

Quantum circuits are generated by

which come from the prop formalism¹ together with some deformation rules that ensure that circuits are defined "up to deformation".

¹The prop formalism is a mathematical framework for graphical language.

Quantum circuits as a graphical language

Quantum circuits are generated by

which come from the prop formalism¹ together with some deformation rules that ensure that circuits are defined "up to deformation".

¹The prop formalism is a mathematical framework for graphical language.

circuits \neq unitaries

Using axioms to transform circuits

We can use simple axioms such that,

to derive new equations. For instance,

Using axioms to transform circuits

We can use simple axioms such that,

to derive new equations. For instance,

Soundness Any derivable equation is true. $\forall C_1, C_2 \in \mathcal{QC}$: $\Gamma \vdash C_1 = C_2 \implies [\![C_1]\!] = [\![C_2]\!]$

Completeness

Any true equation is derivable. $\forall C_1, C_2 \in QC$: $\llbracket C_1 \rrbracket = \llbracket C_2 \rrbracket \implies \Gamma \vdash C_1 = C_2$

Soundness Any derivable equation is true. $\forall C_1, C_2 \in QC$: $\Gamma \vdash C_1 = C_2 \implies [\![C_1]\!] = [\![C_2]\!]$ Completeness Any true equation is derivable. $\forall C_1, C_2 \in QC$: $[\![C_1]\!] = [\![C_2]\!] \implies [\![C_1]\!] = [\![C_2]\!]$

SoundnessAny derivable equation is true. $\forall C_1, C_2 \in \mathcal{QC}$: $\Gamma \vdash C_1 = C_2 \implies [\![C_1]\!] = [\![C_2]\!]$

Completeness

Any true equation is derivable. $\forall C_1, C_2 \in QC$: $\llbracket C_1 \rrbracket = \llbracket C_2 \rrbracket \implies \Gamma \vdash C_1 = C_2$

SoundnessAny derivable equation is true. $\forall C_1, C_2 \in \mathcal{QC}$: $\Gamma \vdash C_1 = C_2 \implies [\![C_1]\!] = [\![C_2]\!]$

Completeness

Any true equation is derivable. $\forall C_1, C_2 \in QC$: $\llbracket C_1 \rrbracket = \llbracket C_2 \rrbracket \implies \Gamma \vdash C_1 = C_2$

Trivial, just take all sound equations.

Real goal: find a small complete and sound equational theory. $\longrightarrow arXiv: 2206.10577 (LICS2023)^2$

^{*}A Complete Equational Theory for Quantum Circuits. Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, Benoît Valiron, LICS2023.

Trivial, just take all sound equations.

Real goal: find a small complete and sound equational theory. \rightarrow arXiv:2206.10577(LICS2023)²

²A Complete Equational Theory for Quantum Circuits. Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, Benoît Valiron. LICS2023.

The first complete and sound equational theory

6/15

Problem: Many equations including non-intuitive and weird ones.

Real real goal: find a small complete and sound equational theory made of simple and intuitive axioms.

Problem: Many equations including non-intuitive and weird ones.

Real real goal: find a small complete and sound equational theory made of simple and intuitive axioms.

Simplification of the equational theory

arXiv:2303.03117 (CSL2024)³

³Quantum Circuit Completeness: Extensions and Simplifications. Alexandre Clément, Noé Delorme, Simon Perdrix, Renaud Vilmart. CSL2024.

Killing the remaining weird rule

The two following intermediate results are the key to derive (E_{3D}) .

Killing the remaining weird rule

The two following intermediate results are the key to derive (E_{3D}) .

Question: Can we simplify the equational theory even more?

Minimality All axioms are independents. $\forall (C_1 = C_2) \in \Gamma$: $\Gamma \setminus \{C_1 = C_2\} \nvDash C_1 = C_2$

Real real real goal: find a minimal complete and sound equational theory made of simple and intuitive axioms.

Question: Can we simplify the equational theory even more?

Minimality

All axioms are independents. $\forall (C_1 = C_2) \in \Gamma \quad : \quad \Gamma \setminus \{C_1 = C_2\} \nvDash C_1 = C_2$

Real real real goal: find a minimal complete and sound equational theory made of simple and intuitive axioms.

Question: Can we simplify the equational theory even more?

Minimality

All axioms are independents. $\forall (C_1 = C_2) \in \Gamma \quad : \quad \Gamma \setminus \{C_1 = C_2\} \nvDash C_1 = C_2$

Real real goal: find a minimal complete and sound equational theory made of simple and intuitive axioms.

Theorem

This equational theory is complete, sound and minimal.

Every instances of $(1) = (1) = \frac{1}{2} \frac{1}{$

Theorem

There is no complete equational theory for quantum circuits made of equations acting on a bounded number of qubits.

More precisely, any complete equational theory for n-qubit quantum circuits has at least one rule acting on n qubits.

Every instances of $\underbrace{[n]}_{-P(2\pi)]} \stackrel{(1)}{=} \underbrace{[n]}_{\geq 3}$ are necessary (for every $n \geq 3$).

Theorem

There is no complete equational theory for quantum circuits made of equations acting on a bounded number of qubits.

More precisely, any complete equational theory for n-qubit quantum circuits has at least one rule acting on n qubits.

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket C \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as

$$\begin{bmatrix} C_2 \circ C_1 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_1 \otimes C_2 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_2 \end{bmatrix}_k^{\sharp} + \begin{bmatrix} C_1 \end{bmatrix}_k^{\sharp} \mod 2\pi$$
$$\begin{bmatrix} \vdots \end{bmatrix}_k^{\sharp} = \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 0 \qquad \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 2^k \varphi \mod 2\pi \qquad \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\pi \mod 2\pi$$
$$\begin{bmatrix} & & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-2}\pi \mod 2\pi \qquad \begin{bmatrix} & & & \\ & & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\varphi \mod 2\pi$$

Any sound equation involving quantum circuits acting on at most n-1 qubits is also sound according to $\llbracket \cdot \rrbracket_{n-1}^{\sharp}$.

However,

$$\begin{bmatrix} \hline & & \\ & -P(2\pi) \end{bmatrix}_{n-1}^{\sharp} = \pi \neq 0 = \begin{bmatrix} \hline & & \\ & \vdots \end{bmatrix}_{n-1}^{\sharp}$$

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit *C*, let $\llbracket C \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as

$$\begin{bmatrix} C_2 \circ C_1 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_1 \otimes C_2 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_2 \end{bmatrix}_k^{\sharp} + \begin{bmatrix} C_1 \end{bmatrix}_k^{\sharp} \mod 2\pi$$
$$\begin{bmatrix} \vdots \end{bmatrix}_k^{\sharp} = \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 0 \qquad \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 2^k \varphi \mod 2\pi \qquad \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\pi \mod 2\pi$$
$$\begin{bmatrix} & & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-2}\pi \mod 2\pi \qquad \begin{bmatrix} & & & \\ & & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\varphi \mod 2\pi$$

Any sound equation involving quantum circuits acting on at most n-1 qubits is also sound according to $[\![\cdot]\!]_{n-1}^{\sharp}$.

However,

$$\left[\begin{array}{c} \bullet\\ -\underline{P(2\pi)}\\ -\underline{P(2\pi)}\\ \end{array}\right]^{\sharp}_{n-1} = \pi \neq 0 = \left[\begin{array}{c} \bullet\\ \vdots\\ \end{array}\right]^{\sharp}_{n-1}$$

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit *C*, let $\llbracket C \rrbracket_k^{\sharp} \in [0, 2\pi)$ be inductively defined as

$$\begin{bmatrix} C_2 \circ C_1 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_1 \otimes C_2 \end{bmatrix}_k^{\sharp} = \begin{bmatrix} C_2 \end{bmatrix}_k^{\sharp} + \begin{bmatrix} C_1 \end{bmatrix}_k^{\sharp} \mod 2\pi$$
$$\begin{bmatrix} \vdots \end{bmatrix}_k^{\sharp} = \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 0 \qquad \begin{bmatrix} & & \\ & & \end{bmatrix}_k^{\sharp} = 2^k \varphi \mod 2\pi \qquad \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\pi \mod 2\pi$$
$$\begin{bmatrix} & & & \\ & & \end{bmatrix}_k^{\sharp} = 2^{k-2}\pi \mod 2\pi \qquad \begin{bmatrix} & & & \\ & & & \end{bmatrix}_k^{\sharp} = 2^{k-1}\varphi \mod 2\pi$$

Any sound equation involving quantum circuits acting on at most n-1 qubits is also sound according to $[\![\cdot]\!]_{n-1}^{\sharp}$.

However,

$$\begin{bmatrix} - & & \\ -$$

 \longrightarrow The theorem still holds!

Possible weakness: The choice of the generators -H, $-P(\varphi)$, $-\varphi$, φ is not unique. What if we take another univeral gate set?

 \longrightarrow The theorem still holds!

Possible weakness: The choice of the generators -H, $-P(\varphi)$, $-\varphi$, φ is not unique. What if we take another univeral gate set?

 \longrightarrow The theorem still holds!

Possible weakness: The choice of the generators -H, $-P(\varphi)$, \downarrow , (φ) is not unique. What if we take another univeral gate set?

 \longrightarrow The theorem still holds!

Possible weakness: The choice of the generators -H, $-P(\varphi)$, $-P(\varphi)$, φ is not unique. What if we take another univeral gate set?

 \longrightarrow The theorem still holds!

Possible weakness: The choice of the generators $-\underline{H}$, $-\underline{P(\varphi)}$, $-\underline{P($

Interestingly, there is a complete equational theory for quantum circuits with auxiliary qubits (universal for isometries) made of equations acting on a bounded number of qubits.

Thanks

arxiv:2311.07476