Minimal Equational Theories for Quantum Circuits

Alexandre Clément*, Noé Delorme ${ }^{\dagger}$, Simon Perdrix ${ }^{\dagger}$
*Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France
† Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

What is it all about?

This is a minimal complete equational theory for quantum circuits.

$$
\begin{aligned}
& \left(2 \pi \stackrel{\left(\mathrm{~S}_{2 \pi}\right)}{=} \mathrm{a} \text { (ب1) (42)} \stackrel{\left(\mathrm{S}_{+}\right)}{=} \varphi_{1+\varphi_{2}}^{\varphi_{1}} \quad-\boldsymbol{H}-\boldsymbol{H}-\stackrel{\left(\mathrm{H}^{2}\right)}{=}-\quad-P_{(0)-}^{\stackrel{\left(\mathrm{P}_{0}\right)}{=}-}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\vec{H} \stackrel{\left(\mathrm{EH}^{\prime}\right)}{=}-\sqrt[P\left(\frac{\pi}{2}\right)]{-R_{X}\left(\frac{\pi}{2}\right)}-\sqrt[P\left(\frac{\pi}{2}\right)]{ } \\
& -R_{x}\left(\alpha_{1}\right)-P\left(\alpha_{2}\right)-R_{x}\left(\alpha_{3}\right)-\stackrel{(E)}{=} \stackrel{\left(\beta_{0}\right)}{-P\left(\beta_{1}\right)-R_{x}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-} \\
& \left.\underset{-\frac{!}{P(2 \pi)-}}{\stackrel{(1)}{=}}\right\}_{n \geq 3}
\end{aligned}
$$

Quantum circuits as a graphical language

Quantum circuits are generated by

$$
\begin{equation*}
\sqrt{H}, \quad \sqrt{P(\varphi)}, \quad \vec{\infty} \tag{4}
\end{equation*}
$$

together with
which come from the prop formalism ${ }^{1}$ together with some deformation rules that ensure that circuits are defined "un to deformation"

[^0]
Quantum circuits as a graphical language

Quantum circuits are generated by

$$
\begin{equation*}
\vec{H}, \quad \quad P(\varphi) \quad, \quad ӊ \tag{4}
\end{equation*}
$$

together with

which come from the prop formalism ${ }^{1}$ together with some deformation rules that ensure that circuits are defined "up to deformation".

[^1]
Standard interpretation of quantum circuits

circuits \neq unitaries

Semantics

$$
\begin{aligned}
& \llbracket C_{2} \circ C_{1} \rrbracket=\llbracket C_{2} \rrbracket \circ \llbracket C_{1} \rrbracket \quad \llbracket C_{1} \otimes C_{2} \rrbracket=\llbracket C_{1} \rrbracket \otimes \llbracket C_{2} \rrbracket \\
& \llbracket \square \rrbracket=(1) \quad \llbracket \oplus \rrbracket=\left(e^{i \varphi}\right) \\
& \llbracket — \rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \llbracket-\mathbb{H}-\rrbracket=1 / \sqrt{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \llbracket-\widehat{P(\varphi)}-\rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right) \\
& \llbracket \overrightarrow{\dot{D}} \rrbracket \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \llbracket X \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Using axioms to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

Using axioms to transform circuits

We can use simple axioms such that,

and

(CZ) $-\frac{-P\left(\frac{\pi}{2}\right)}{\left.-P\left(\frac{\pi}{2}\right) \right\rvert\,} \dot{P} \cdot \stackrel{P\left(-\frac{\pi}{2}\right)}{ } \dot{\theta}$
to derive new equations. For instance,

$\stackrel{(\mathrm{G})}{=}$

Desired properties for equational theories

Question: Is there an equational theory (i.e. a set of axioms) from which we can derive any true equation and only true equations?

Soundness
Any derivable ϵ quation is true

Completeness
Any true equation is derivable

Goal: find a complete and sound equational theory.

Desired properties for equational theories

Question: Is there an equational theory (i.e. a set of axioms) from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.
$\forall C_{1}, C_{2} \in \mathcal{Q C}: \quad \Gamma \vdash C_{1}=C_{2} \Longrightarrow \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket$

Completeness
Any true equation is derivable.

Goal: find a complete and sound equational theory.

Desired properties for equational theories

Question: Is there an equational theory (i.e. a set of axioms) from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.

$$
\forall C_{1}, C_{2} \in \mathcal{Q C} \quad: \quad \Gamma \vdash C_{1}=C_{2} \quad \Longrightarrow \quad \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket
$$

Completeness

Any true equation is derivable.
$\forall C_{1}, C_{2} \in \mathcal{Q C} \quad: \quad \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \Longrightarrow \Gamma \vdash C_{1}=C_{2}$

Goal: find a complete and sound equational theory.

Desired properties for equational theories

Question: Is there an equational theory (i.e. a set of axioms) from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.

$$
\forall C_{1}, C_{2} \in \mathcal{Q C} \quad: \quad \Gamma \vdash C_{1}=C_{2} \quad \Longrightarrow \quad \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket
$$

Completeness

Any true equation is derivable.
$\forall C_{1}, C_{2} \in \mathcal{Q C} \quad: \quad \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \Longrightarrow \Gamma \vdash C_{1}=C_{2}$

Goal: find a complete and sound equational theory.

Trivial, just take all sound equations. \because

Real goal: find a small complete and sound equational theory. \longrightarrow arXiv:2206.10577(LICS2023)2

Trivial, just take all sound equations.

Real goal: find a small complete and sound equational theory. \longrightarrow arXiv: 2206. 10577 (LICS2023) 2

The first complete and sound equational theory
$(2 \pi) \stackrel{\left(\mathrm{S}_{2 \pi}\right)}{=}$
(0) $\stackrel{\left(\mathrm{S}_{0}\right)}{=}$
(41) (42)
$\stackrel{\left(\mathrm{S}_{+}\right)}{=}\left(\varphi_{1+\varphi_{2}}\right.$

- $\mathrm{H}-\mathrm{H} \stackrel{\left(\mathrm{H}^{2}\right)}{=}$
$-\stackrel{\left(P_{0}\right)}{=}$
$\rightarrow \stackrel{\left(C X^{2}\right)}{=}$ \qquad

$-H \stackrel{\left(\mathrm{E}_{H}\right)}{=}-\sqrt{P\left(\frac{\pi}{2}\right)}-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-\sqrt{R_{X}\left(\alpha_{1}\right)}-P\left(\alpha_{2}\right)-R_{X}\left(\alpha_{3}\right)-\stackrel{\left(\mathrm{E}_{C}\right)}{=}-\overline{\left(\beta_{0}\right)}-R_{X\left(\beta_{1}\right)}^{-P\left(\beta_{3}\right)}-$

(E3D)

The problem of the equational theory

Problem: Many equations including non-intuitive and weird ones.

Real real goal: find a small complete and sound equational theory made of simple and intuitive axioms.

The problem of the equational theory

Problem: Many equations including non-intuitive and weird ones.

Real real goal: find a small complete and sound equational theory made of simple and intuitive axioms.

Simplification of the equational theory
arXiv:2303. $03117\left(\right.$ CSL2024) ${ }^{3}$
(2 $\stackrel{\left(\mathrm{S}_{2 \pi}\right)}{=} \underset{\square}{=}$

$-H-\stackrel{\left(\mathrm{H}^{2}\right)}{=}-\quad \stackrel{\left(\mathrm{P}_{0}\right)}{=}$

$H \stackrel{\left(E_{H}\right)}{=}-P\left(\frac{\pi}{2}\right)-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-$
$-R_{X}\left(\alpha_{1}\right) \quad P\left(\alpha_{2}\right) \quad R_{x}\left(\alpha_{3}\right)$
$\stackrel{(\mathrm{E})}{=} \stackrel{\left(\beta_{0}\right)-P\left(\beta_{1}\right)-\sqrt{R_{x}\left(\beta_{2}\right)}-P\left(\beta_{3}\right)-}{-}$

${ }^{3}$ Quantum Circuit Completeness: Extensions and Simplifications. Alexandre Clément, Noé Delorme, Simon Perdrix, Renaud Vilmart. CSL2024.

Killing the remaining weird rule

The two following intermediate results are the key to derive ($\mathrm{E}_{3 \mathrm{D}}$)

Killing the remaining weird rule

The two following intermediate results are the key to derive ($\mathrm{E}_{3 \mathrm{D}}$) .

Towards the limit of simplifications

Question: Can we simplify the equational theory even more?

Minimality
 All axioms are independents.

Real real real goal: find a minimal complete and sound equational theory made of simnle and intuitive axioms

Towards the limit of simplifications

Question: Can we simplify the equational theory even more?

Minimality

All axioms are independents.

$$
\forall\left(C_{1}=C_{2}\right) \in \Gamma \quad: \quad \Gamma \backslash\left\{C_{1}=C_{2}\right\} \nvdash C_{1}=C_{2}
$$

Real real real goal: find a minimal complete and sound equational theory made of simple and intuitive axioms.

Towards the limit of simplifications

Question: Can we simplify the equational theory even more?

Minimality

All axioms are independents.

$$
\forall\left(C_{1}=C_{2}\right) \in \Gamma \quad: \quad \Gamma \backslash\left\{C_{1}=C_{2}\right\} \nvdash C_{1}=C_{2}
$$

Real real real goal: find a minimal complete and sound equational theory made of simple and intuitive axioms.

The minimal complete and sound equational theory

Theorem

This equational theory is complete, sound and minimal.

$$
\begin{aligned}
& -\sqrt{-} \stackrel{\left(\mathrm{E}_{H}\right)}{=}-\sqrt[P\left(\frac{\pi}{2}\right)]{-R_{X}\left(\frac{\pi}{2}\right)}-P\left(\frac{\pi}{2}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& \left.\overline{-\frac{!}{P(2 \pi)-}} \stackrel{(1)}{=}\right\}_{n \geq 3}
\end{aligned}
$$

Unboundedness of the equational theory

Every instances of $\left.\underset{-\frac{\bullet}{P(2 \pi)}-}{\stackrel{(1)}{=}}\right\}^{\square} n \geq 3$ are necessary (for every $n \geq 3$).

Theorem
There is no complete equational theory for quantum circuits made of equations acting on a bounded number of qubits.

More precisely, any complete equational theory for n-qubit quantum
circuits has at least one rule acting on n qubits.

Unboundedness of the equational theory

Every instances of $\left.\frac{\square}{-P(2 \pi)-} \stackrel{(1)}{\underline{\vdots}}\right\}^{n \geq 3}$ are necessary (for every $n \geq 3$).

Theorem

There is no complete equational theory for quantum circuits made of equations acting on a bounded number of qubits.

More precisely, any complete equational theory for n -qubit quantum circuits has at least one rule acting on n qubits.

Proof sketch of the main theorem

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket C \rrbracket_{k}^{\sharp} \in[0,2 \pi)$ be inductively defined as

$$
\begin{gathered}
\llbracket C_{2} \circ C_{1} \rrbracket_{k}^{\sharp}=\llbracket C_{1} \otimes C_{2} \rrbracket_{k}^{\sharp}=\llbracket C_{2} \rrbracket_{k}^{\sharp}+\llbracket C_{1} \rrbracket_{k}^{\sharp} \bmod 2 \pi \\
\llbracket \because \|_{k}^{\sharp}=\llbracket-\rrbracket_{k}^{\sharp}=0 \quad \llbracket \oplus \rrbracket_{k}^{\sharp}=2^{k} \varphi \bmod 2 \pi \quad \llbracket-\uplus-\rrbracket_{k}^{\sharp}=2^{k-1} \pi \bmod 2 \pi \\
\llbracket \dot{\Phi} \|_{k}^{\sharp}=\llbracket>\rrbracket_{k}^{\sharp}=2^{k-2} \pi \bmod 2 \pi \quad \llbracket-P(\varphi)-\rrbracket_{k}^{\sharp}=2^{k-1} \varphi \bmod 2 \pi
\end{gathered}
$$

Any sound equation involving quantum circuits acting on at most $n-1$ qubits is also sound according to $\llbracket \cdot \rrbracket_{n-1}^{\sharp}$

However

Proof sketch of the main theorem

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket C \rrbracket_{k}^{\sharp} \in[0,2 \pi)$ be inductively defined as

$$
\begin{aligned}
& \llbracket C_{2} \circ C_{1} \rrbracket_{k}^{\sharp}=\llbracket C_{1} \otimes C_{2} \rrbracket_{k}^{\sharp}=\llbracket C_{2} \rrbracket_{k}^{\sharp}+\llbracket C_{1} \rrbracket_{k}^{\sharp} \bmod 2 \pi \\
& \left.\left.\llbracket \because]_{k}^{\sharp}=\llbracket-\rrbracket_{k}^{\sharp}=0 \quad \llbracket \oplus\right)\right]_{k}^{\sharp}=2^{k} \varphi \bmod 2 \pi \quad \llbracket-\uplus-\rrbracket_{k}^{\sharp}=2^{k-1} \pi \bmod 2 \pi \\
& \llbracket \dot{\dot{\Phi}} \rrbracket_{k}^{\sharp}=\llbracket \subset \rrbracket_{k}^{\sharp}=2^{k-2} \pi \bmod 2 \pi \quad \llbracket-\underline{P(\varphi)}-\rrbracket_{k}^{\sharp}=2^{k-1} \varphi \bmod 2 \pi
\end{aligned}
$$

Any sound equation involving quantum circuits acting on at most $n-1$ qubits is also sound according to $\llbracket \cdot \|_{n-1}^{\sharp}$.
However,

Proof sketch of the main theorem

Alternative interpretation

For any $k \in \mathbb{N}$, for any quantum circuit C, let $\llbracket C \rrbracket_{k}^{\sharp} \in[0,2 \pi)$ be inductively defined as

$$
\begin{aligned}
& \llbracket C_{2} \circ C_{1} \rrbracket_{k}^{\sharp}=\llbracket C_{1} \otimes C_{2} \rrbracket_{k}^{\sharp}=\llbracket C_{2} \rrbracket_{k}^{\sharp}+\llbracket C_{1} \rrbracket_{k}^{\sharp} \bmod 2 \pi \\
& \left.\left.\llbracket \because]_{k}^{\sharp}=\llbracket-\rrbracket_{k}^{\sharp}=0 \quad \llbracket \oplus\right)\right]_{k}^{\sharp}=2^{k} \varphi \bmod 2 \pi \quad \llbracket-\uplus-\rrbracket_{k}^{\sharp}=2^{k-1} \pi \bmod 2 \pi \\
& \llbracket \dot{\Phi} \|_{k}^{\sharp}=\llbracket \subset \rrbracket_{k}^{\sharp}=2^{k-2} \pi \bmod 2 \pi \quad \llbracket-P(\varphi)-\rrbracket_{k}^{\sharp}=2^{k-1} \varphi \bmod 2 \pi
\end{aligned}
$$

Any sound equation involving quantum circuits acting on at most $n-1$ qubits is also sound according to $\llbracket \cdot \rrbracket_{n-1}^{\sharp}$.

However,

$$
\left.\left.\llbracket \frac{!}{-\sqrt{P(2 \pi)}-}\right\} n \|_{n-1}^{\sharp}=\pi \neq 0=\llbracket \frac{\bar{\vdots}}{-}\right\}_{n} \|_{n-1}^{\sharp}
$$

Discussion of the theorem

Possible weakness: $\llbracket C \rrbracket_{k}^{\sharp}$ is closely related to the determinant of $\llbracket C \rrbracket$. What if we consider quantum circuits up to global phases? \longrightarrow The theorem still holds! Possible weakness: The choice of the generators $-\sqrt[H]{-},-\sqrt{P(\varphi)}-$ is not unique. What if we take another univeral gate set? \longrightarrow The theorem still holds! (for unitary quantum circuits.)

Discussion of the theorem

Possible weakness: $\llbracket C \rrbracket_{k}^{\sharp}$ is closely related to the determinant of $\llbracket C \rrbracket$. What if we consider quantum circuits up to global phases?
\longrightarrow The theorem still holds!

Possible weakness: The choice of the generators $-(H-,-\sqrt{P(\varphi)}-$ is not unique. What if we take another univeral gate set? \longrightarrow The theorem still holds! (for unitary quantum circuits.)

Discussion of the theorem

Possible weakness: $\llbracket C \rrbracket_{k}^{\sharp}$ is closely related to the determinant of $\llbracket C \rrbracket$. What if we consider quantum circuits up to global phases?
\longrightarrow The theorem still holds!

Possible weakness: The choice of the generators $-\boldsymbol{H}-\sqrt{P(\varphi)-}$,
 , (4) is not unique. What if we take another univeral gate set?
\longrightarrow The theorem still holds! (for unitary quantum circuits.)

Discussion of the theorem

Possible weakness: $\llbracket C \rrbracket_{k}^{\sharp}$ is closely related to the determinant of $\llbracket C \rrbracket$. What if we consider quantum circuits up to global phases?
\longrightarrow The theorem still holds!

Possible weakness: The choice of the generators $-\boldsymbol{H}-\sqrt{P(\varphi)-}$, \square , (4) is not unique. What if we take another univeral gate set?
\longrightarrow The theorem still holds! (for unitary quantum circuits.)

Discussion of the theorem

Possible weakness: $\llbracket C \rrbracket_{k}^{\sharp}$ is closely related to the determinant of $\llbracket C \rrbracket$. What if we consider quantum circuits up to global phases?
\longrightarrow The theorem still holds!

Possible weakness: The choice of the generators $-\boldsymbol{H}-,-\overline{P(\varphi)-}$,
 is not unique. What if we take another univeral gate set?
\longrightarrow The theorem still holds! (for unitary quantum circuits.)

Quantum circuits with ancillae

Interestingly, there is a complete equational theory for quantum circuits with auxiliary qubits (universal for isometries) made of equations acting on a bounded number of qubits.

$$
\begin{aligned}
& -{ }^{H}-\stackrel{\left(E_{H}\right)}{=}-P\left(\frac{\pi}{2}\right)-R_{\times\left(\frac{\pi}{2}\right)}-P\left(\frac{\pi}{2}\right)- \\
& -R_{X}\left(\alpha_{1}\right)-\stackrel{(\mathrm{E})}{=}\left(\beta_{0}\right)-R_{X}\left(\alpha_{3}\right)-\sqrt{P\left(\beta_{1}\right)}-R_{X}\left(\beta_{2}\right)-P\left(\beta_{3}-\right. \\
& \longmapsto \stackrel{(A)}{=} \\
& +P(\varphi)-\stackrel{(A P)}{=} \vdash \\
& \stackrel{(A C X)}{=} \quad-
\end{aligned}
$$

Thanks

arxiv:2311. 07476

[^0]: ${ }^{1}$ The prop formalism is a mathematical framework for graphical language

[^1]: ${ }^{1}$ The prop formalism is a mathematical framework for graphical language.

