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What is it all about?

This is a minimal complete equational theory for quantum circuits.
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Quantum circuits as a graphical language

Quantum circuits are generated by

H , P(φ) , , φ

together with

, ,

which come from the prop formalism1 together with some deformation

rules that ensure that circuits are defined “up to deformation”.

H

P(π2 )

=

H P(π2 )

1The prop formalism is a mathematical framework for graphical language.
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Standard interpretation of quantum circuits

circuits ̸= unitaries

Semantics

JC2 ◦ C1K = JC2K ◦ JC1K JC1 ⊗ C2K = JC1K ⊗ JC2K

J K = (1) J φ K = (e iφ)

J K = ( 1 0
0 1 )

q
H

y
= 1/

√
2
(
1 1
1 −1

) q
P(φ)

y
=

(
1 0
0 e iφ

)
s {

=

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) s {
=

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)
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Using axioms to transform circuits

We can use simple axioms such that,

H H
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=
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to derive new equations. For instance,
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Desired properties for equational theories

Question: Is there an equational theory (i.e. a set of axioms) from which

we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.

∀C1,C2 ∈ QC : Γ ⊢ C1 = C2 =⇒ JC1K = JC2K

Completeness

Any true equation is derivable.

∀C1,C2 ∈ QC : JC1K = JC2K =⇒ Γ ⊢ C1 = C2

Goal: find a complete and sound equational theory.
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Trivial, just take all sound equations.

Real goal: find a small complete and sound equational theory.

−→ arXiv:2206.10577(LICS2023)2

2A Complete Equational Theory for Quantum Circuits. Alexandre Clément, Nicolas

Heurtel, Shane Mansfield, Simon Perdrix, Benôıt Valiron. LICS2023.
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The first complete and sound equational theory
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The problem of the equational theory

Problem: Many equations including non-intuitive and weird ones.
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Real real goal: find a small complete and sound equational theory made

of simple and intuitive axioms.
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Simplification of the equational theory

arXiv:2303.03117 (CSL2024)3
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3Quantum Circuit Completeness: Extensions and Simplifications. Alexandre Clément,
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Killing the remaining weird rule
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The two following intermediate results are the key to derive (E3D) .
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Towards the limit of simplifications

Question: Can we simplify the equational theory even more?

Minimality

All axioms are independents.

∀(C1 = C2) ∈ Γ : Γ\{C1 = C2} ⊬ C1 = C2

Real real real goal: find a minimal complete and sound equational theory

made of simple and intuitive axioms.
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The minimal complete and sound equational theory

Theorem

This equational theory is complete, sound and minimal.
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Unboundedness of the equational theory

Every instances of
P(2π)

(I)
= ...

}
n ≥ 3 are necessary (for every n ≥ 3).

Theorem

There is no complete equational theory for quantum circuits made of

equations acting on a bounded number of qubits.

More precisely, any complete equational theory for n-qubit quantum

circuits has at least one rule acting on n qubits.
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Proof sketch of the main theorem

Alternative interpretation

For any k ∈ N, for any quantum circuit C , let JCK♯k ∈ [0, 2π) be

inductively defined as

JC2 ◦ C1K
♯
k = JC1 ⊗ C2K

♯
k = JC2K

♯
k + JC1K

♯
k mod 2π

J K♯k = J K♯k = 0 J φ K♯k = 2kφ mod 2π
q

H

y♯

k
= 2k−1π mod 2π

s {♯

k

=

s {♯

k

= 2k−2π mod 2π
q

P(φ)
y♯

k
= 2k−1φ mod 2π

Any sound equation involving quantum circuits acting on at most n − 1

qubits is also sound according to J·K♯n−1.

However,

s

P(2π)

}
n

{♯

n−1

= π ̸= 0 =

s
...

}
n

{♯

n−1
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Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

is not unique. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

14 / 15



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

is not unique. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

14 / 15



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

is not unique. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

14 / 15



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

is not unique. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

14 / 15



Discussion of the theorem

Possible weakness: JCK♯k is closely related to the determinant of JCK.
What if we consider quantum circuits up to global phases?

−→ The theorem still holds!

Possible weakness: The choice of the generators H , P(φ) , , φ

is not unique. What if we take another univeral gate set?

−→ The theorem still holds! (for unitary quantum circuits.)

14 / 15



Quantum circuits with ancillae

Interestingly, there is a complete equational theory for quantum circuits

with auxiliary qubits (universal for isometries) made of equations acting

on a bounded number of qubits.
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Thanks

arxiv:2311.07476
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