Quantum Circuit Completeness: Extensions and Simplifications

32nd EACSL Annual Conference on Computer Science Logic 2024 (CSL'24)

Alexandre Clément* ${ }^{*}$ Noé Delorme ${ }^{\ddagger}$, Simon Perdrix ${ }^{\ddagger}$, and Renaud Vilmart*
*Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria, LMF, 91190, Gif-sur-Yvette, France
\ddagger Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

What is it all about?

Quantum circuits are a rigourous graphical representation of quantum algorithms.

Just like boolean circuits are a rigourous graphical representation of classical algorithms.

What is it all about?

Quantum circuits are a rigourous graphical representation of quantum algorithms.

Just like boolean circuits are a rigourous graphical representation of classical algorithms.

Quantum circuits as a graphical language

Quantum circuits are generated by

$$
-\sqrt{H}, \quad-\quad \infty \quad, \quad \text { — }
$$

and can be composed sequentially with o and in parallel with \otimes as

to form new circuits.

Quantum circuits as a graphical language

Quantum circuits are generated by

$$
-H \quad, \quad-P(\varphi)-
$$

and can be composed sequentially with \circ and in parallel with \otimes as

to form new circuits.

Quantum circuits as a graphical language

Quantum circuits are generated by

$$
-H-\quad-P(\varphi)
$$

and can be composed sequentially with \circ and in parallel with \otimes as

to form new circuits.

$$
(\vec{\omega} \circ(-\otimes-\sqrt{H}))=\sqrt{H}
$$

Quantum circuits as a graphical language

Formally, graphical languages are defined within the prop formalism with some deformation rules such that

$$
-P(\varphi)-0-P(\varphi) \quad \text { or }
$$

This framework captures the intuitive behaviour of wires by ensuring that circuits are defined "un to deformation"

Quantum circuits as a graphical language

Formally, graphical languages are defined within the prop formalism with some deformation rules such that

$$
P(\varphi)-0-P(\varphi) \quad \text { or }
$$

This framework captures the intuitive behaviour of wires by ensuring that circuits are defined "up to deformation".

Other usual gates as shortcut notations

There are only four different kinds of generators

Other gates can be defined as shortcut notations.

Other usual gates as shortcut notations

There are only four different kinds of generators

$$
\begin{equation*}
H, \quad \quad P(\varphi), \quad \oiint \tag{4}
\end{equation*}
$$

Other gates can be defined as shortcut notations.

$$
R_{X}(\theta)-:={ }^{-\theta / 2}-H
$$

Standard interpretation of quantum circuits

Interpretation

$$
\begin{aligned}
& \llbracket C_{2} \circ C_{1} \rrbracket=\llbracket C_{2} \rrbracket \circ \llbracket C_{1} \rrbracket \quad \llbracket C_{1} \otimes C_{2} \rrbracket=\llbracket C_{1} \rrbracket \otimes \llbracket C_{2} \rrbracket \\
& \llbracket \square \rrbracket=(1) \quad \llbracket \oplus \rrbracket=\left(e^{i \varphi}\right) \\
& \llbracket — \rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \llbracket-\mathbb{H}-\rrbracket=1 / \sqrt{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \llbracket-P(\varphi)-\rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right) \\
& \llbracket \dot{\dot{b}} \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \llbracket X \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Standard interpretation of quantum circuits

Interpretation

$$
\begin{aligned}
& \llbracket C_{2} \circ C_{1} \rrbracket=\llbracket C_{2} \rrbracket \circ \llbracket C_{1} \rrbracket \quad \llbracket C_{1} \otimes C_{2} \rrbracket=\llbracket C_{1} \rrbracket \otimes \llbracket C_{2} \rrbracket \\
& \llbracket \square \rrbracket=(1) \quad \llbracket \oplus \rrbracket=\left(e^{i \varphi}\right) \\
& \llbracket — \rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \llbracket-\mathbb{H}-\rrbracket=1 / \sqrt{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \llbracket-P(\varphi)-\rrbracket=\left(\begin{array}{ll}
1 & 0 \\
0 & e^{i \varphi}
\end{array}\right) \\
& \llbracket \dot{\dot{b}} \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad \llbracket X \rrbracket=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right)
\end{aligned}
$$

circuits \neq matrices

Motivations

Distinct circuits can have the same interpretation.

Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).
- Hardware-constraint satisfaction (for instance topological constraints)
- Verification, circuit equivalence testing.

Motivations

Distinct circuits can have the same interpretation.

Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).
- Hardware-constraint satisfaction (for instance topological constraints).
- Verification, circuit equivalence testing.

Using equations to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

Using equations to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

Using equations to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

Using equations to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

Using equations to transform circuits

We can use simple axioms such that,

and

to derive new equations. For instance,

$\stackrel{(\mathrm{G})}{=}$

Using equations to transform circuits

We can use simple axioms such that,

to derive new equations. For instance,

Using equations to transform circuits

We can use simple axioms such that,

to derive new equations. For instance,

Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) 「 from which we can derive any true equation and only true equations?

Soundness

Any derivable ϵ guation is true.

Completeness

Any true equation is derivable.

Previous work [Clément,Heurtel,Mansfield,Perdrix, Valiron LICS'23]: The first comnlete and snound equational theory.

Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) Γ from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.
$\forall C_{1}, C_{2}: \quad\left\ulcorner\vdash C_{1}=C_{2} \Longrightarrow \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket\right.$

Completeness

Any true equation is derivable.

Previous work [Clément,Heurtel,Mansfield,Perdrix, Valiron LICS'23]: The first complete and sound equational theory.

Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) Γ from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.
$\forall C_{1}, C_{2}: \quad \Gamma \vdash C_{1}=C_{2} \Longrightarrow \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket$

Completeness
Any true equation is derivable.
$\forall C_{1}, C_{2}: \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \Longrightarrow \Gamma \vdash C_{1}=C_{2}$

Previous work [Clément,Heurtel,Mansfield,Perdrix,Valiron LICS'23]: The first complete and sound equational theory.

Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) Γ from which we can derive any true equation and only true equations?

Soundness

Any derivable equation is true.

$$
\forall C_{1}, C_{2}: \quad\left\ulcorner\vdash C_{1}=C_{2} \Longrightarrow \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket\right.
$$

Completeness
Any true equation is derivable.
$\forall C_{1}, C_{2}: \llbracket C_{1} \rrbracket=\llbracket C_{2} \rrbracket \Longrightarrow \Gamma \vdash C_{1}=C_{2}$

Previous work [Clément,Heurtel,Mansfield,Perdrix,Valiron LICS'23]: The first complete and sound equational theory.

Complete and sound equational theory [CHMPV LICS'23]
$(2 \pi)=(0)=a$
(41) $\varphi_{2}=\varphi_{1}+\varphi_{2}$

ㅂH-H $=$
$\sqrt{P(0)-}=$

\qquad

$$
-H=-P\left(\frac{\pi}{2}\right)-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-
$$

$-R_{X}\left(\alpha_{1}\right)$
$P\left(\alpha_{2}\right)$
Rx $\left(\alpha_{3}\right)$
(30) $-P\left(\beta_{1}\right)-R_{x}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-$

Some easy and some intricate equations

$$
\begin{aligned}
& (2 \pi)=0=\square \\
& \text { (41) } \varphi_{2}=\left(\varphi_{1}+\varphi_{2}\right) \quad-\text { H-H- }=- \\
& -\sqrt{P(0)-}=-
\end{aligned}
$$

$$
\begin{aligned}
& \vec{f}_{\boxed{x}}=\underline{\sqrt[-x]{-\sqrt[x]{-}}}
\end{aligned}
$$

$$
\begin{aligned}
& -H-\sqrt{H}=-\sqrt{P\left(\frac{\pi}{2}\right)}-\sqrt{R_{x}\left(\frac{\pi}{2}\right)}-\sqrt{P\left(\frac{\pi}{2}\right)}-\quad-\sqrt{R_{x}\left(\alpha_{1}\right)}-\sqrt{P\left(\alpha_{2}\right)}-\sqrt{R_{x}\left(\alpha_{3}\right)}-\sqrt{\left(\beta_{0}\right.}-P\left(\beta_{1}\right)-\sqrt{R_{x}\left(\beta_{2}\right)}-\sqrt{P\left(\beta_{3}\right)}-
\end{aligned}
$$

First contribution

Simplification of the equational theory

Simplifications
$(2 \pi)=(0)=a$
(41) $\varphi_{2}=\varphi_{1}+\varphi_{2}$

- 법 $=$
$\sqrt{P(0)-}=$

$$
\begin{aligned}
& \overrightarrow{\theta x}_{x}=\underline{\theta^{x}} \\
& -H=-\left(P\left(\frac{\pi}{2}\right)-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-\right. \\
& -R_{X}\left(\alpha_{1}\right) \\
& P\left(\alpha_{2}\right) \\
& \sqrt{R_{x}\left(\alpha_{3}\right)}= \\
& \text { (30) }-P\left(\beta_{1}\right)-R_{x}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-
\end{aligned}
$$

Simplifications

$$
\begin{aligned}
& \dot{\sigma}_{\boxed{x}}=\underline{\sqrt[-x]{x}} \\
& \overline{-H C H}=-\sqrt{-P\left(\frac{\pi}{2}\right)} \cdot \sqrt{P\left(\frac{\pi}{2}\right)}+\sqrt{P\left(-\frac{\pi}{2}\right)} \dot{\theta}
\end{aligned}
$$

Simplifications

$$
\begin{aligned}
& \text { (2T) }=\text { © }=0 \\
& \text { (42) (42) }=\left(9_{1}+\varphi_{2}\right) \\
& \text { - }- \text { 田 } \text { 田 }=- \\
& -P^{P(0)-}=- \\
& \dot{\dot{\phi}}=- \\
& \xrightarrow{-P(\varphi)]}=\dot{\sigma}^{P(\varphi)-} \\
& \dot{\phi \cdot \phi}=X
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{b \dot{b}}=\vec{b} \cdot \dot{b}
\end{aligned}
$$

Simplifications

$$
- \text { 부- }=-
$$

$$
-\sqrt{P(0)-}=-
$$

$$
\underset{\infty \cdot \infty}{\infty \cdot \infty}
$$

$$
\overline{H O H}=\frac{P\left(\frac{\pi}{2}\right)}{-P\left(\frac{\pi}{2}\right)} \oplus P\left(-\frac{\pi}{2}\right) \oplus
$$

$$
-H=-\sqrt{P}=-R_{X} \frac{\pi}{2}-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-P\left(\alpha_{1}\right)-R_{X}\left(\alpha_{3}\right)-\sqrt{P\left(\beta_{1}\right)}-R_{X}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-
$$

$$
\overline{\dot{b}}=\overrightarrow{\dot{\phi} \cdot \dot{\phi}}
$$

$$
\begin{aligned}
& (2 \pi=(0)=\square \\
& \left(\varphi_{1}\right)\left(\varphi_{2}\right)=\left(\varphi_{1}+\varphi_{2}\right. \\
& \oint^{\sqrt{P(\varphi)} \cdot}=\underline{-\sqrt{P(\varphi)}}
\end{aligned}
$$

Simplifications

$$
- \text { 부- }=-
$$

$$
-\sqrt{P(0)-}=-
$$

$$
\cdots \cdot \varnothing=\square
$$

$$
-\sqrt{-P\left(\frac{\pi}{2}\right)} \cdot \stackrel{P\left(\frac{\pi}{2}\right)}{P\left(-\frac{\pi}{2}\right)} \oplus
$$

$$
-H=-\sqrt{P}=-R_{X} \frac{\pi}{2}-R_{X}\left(\frac{\pi}{2}\right)-P\left(\frac{\pi}{2}\right)-P\left(\alpha_{1}\right)-R_{X}\left(\alpha_{3}\right)-\sqrt{P\left(\beta_{1}\right)}-R_{X}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-
$$

$$
\overline{\dot{b}}=\overrightarrow{\dot{\phi} \cdot \dot{\phi}}
$$

$$
\begin{aligned}
& (2 \pi=(0)=\square \\
& \left(\varphi_{1}\right)\left(\varphi_{2}\right)=\left(\varphi_{1}+\varphi_{2}\right. \\
& \oint^{\sqrt{P(\varphi)} \cdot}=\underline{-\sqrt{P(\varphi)}}
\end{aligned}
$$

Simplified complete and sound equational theory

$$
\begin{aligned}
& (2 \pi)=(0)={ }_{i . j}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\varphi_{1}\right)=\varphi_{1}+\varphi_{2}
\end{aligned}
$$

$$
\begin{aligned}
& -R_{X}\left(\alpha_{1}\right)-P\left(\alpha_{2}\right)-R_{X}\left(\alpha_{3}\right)-P\left(\beta_{1}\right)-R_{X}\left(\beta_{2}\right)-P\left(\beta_{3}\right)-
\end{aligned}
$$

Theorem (Completeness)

This equational theory is complete, i.e. any two equivalent circuits can be transformed into each other.

Second contribution

Extension of the equational theory

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

$$
\begin{equation*}
-\quad, \quad=(\varphi) \tag{4}
\end{equation*}
$$

together with
respectively denoting qubit initialisation and qubit destruction
(The renerator -1 can only be apmlied to qubits in the $|0|$-state.)

Semantics
We extend $\pi \cdot \pi$ with $[\mid]=|0\rangle$ and $[-| \rangle=\langle 0$

Universal for isometries

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

$$
\begin{array}{ll}
-H- & - \tag{4}\\
& +\quad \text { and } \\
& \vdash \text { - }
\end{array}
$$

together with
respectively denoting qubit initialisation and qubit destruction.
(The generator $-\downarrow$ can only be applied to qubits in the $|0\rangle$-state.)

Semantics

We extend $\pi \cdot \Pi$ with $[\mid]=|0\rangle$ and $[-| \rangle=\langle 0$

Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

$$
\begin{array}{ll}
\boxed{H}, & - \\
\text { th } & \vdash \text { and } \\
& \vdash
\end{array}
$$

respectively denoting qubit initialisation and qubit destruction.
(The generator $-\backslash$ can only be applied to qubits in the $|0\rangle$-state.)

Semantics

We extend $\llbracket \cdot \rrbracket$ with $\llbracket \vdash \rrbracket=|0\rangle$ and $\llbracket-\rrbracket \rrbracket=\langle 0|$.

Universal for isometries

Equational theory for quantum circuits with ancillae
$(2 \pi)=0=0$
(41) (42) $=\varphi_{1}+\varphi_{2}$

- 바 - H $=$
$P(0)-$

$+P(\varphi)-\vdash$

Theorem (Completeness) Adding those three equations n lakes the equational theory complete for quantum circuits with ancillae.

Equational theory for quantum circuits with ancillae
${ }_{2 \pi}=0=0$
(41) $\varphi_{2}=\left(\varphi_{1}+\varphi_{2}\right.$

- $\boldsymbol{H}-\boldsymbol{H}=-$
$\sqrt{P(0)}=$

$$
-H=-\sqrt{P\left(\frac{\pi}{2}\right)}-\sqrt{R_{X}\left(\frac{\pi}{2}\right)}-\sqrt{P\left(\frac{\pi}{2}\right)}-\sqrt{R_{X}\left(\alpha_{1}\right)}-\sqrt{P\left(\alpha_{2}\right)}-R_{X}\left(\alpha_{3}\right)-\sqrt{\beta_{0}}-\sqrt{R_{X}\left(\beta_{2}\right)}-\sqrt{P\left(\beta_{3}\right)}-
$$

$$
\because j=\longmapsto
$$

$$
\vdash P(\varphi)=\longmapsto
$$

Theorem (Completeness)
Adding those three equations makes the equational theory complete for quantum circuits with ancillae.

Equational theory for quantum circuits with ancillae
${ }_{2 \pi}=0=0$
(41) (42) $=\varphi_{1}+\varphi_{2}$

- $\boldsymbol{H}-\boldsymbol{H}=-$
$\sqrt{P(0)}=$

$$
-H=-\sqrt{P\left(\frac{\pi}{2}\right)}-\sqrt{R_{X}\left(\frac{\pi}{2}\right)}-\sqrt{P\left(\frac{\pi}{2}\right)}-\sqrt{R_{X}\left(\alpha_{1}\right)}-\sqrt{P\left(\alpha_{2}\right)}-R_{X}\left(\alpha_{3}\right)-\sqrt{\beta_{0}}-\sqrt{R_{X}\left(\beta_{2}\right)}-\sqrt{P\left(\beta_{3}\right)}-
$$

$$
1]=\longmapsto
$$

$$
\vdash P(\varphi)=\longmapsto
$$

Proposition
The big rule can be replaced by its 2 -qubits version, leading to an equational theory acting on a bounded number of qubits.

Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively

Problem: Cannot apply inductive hypothesis as angles are divided by 2 .
Solution: Using ancillae, we can prove

Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively

Problem: Cannot apply inductive hypothesis as angles are divided by 2 .
Solution: Using ancillae, we can prove

Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively

Problem: Cannot apply inductive hypothesis as angles are divided by 2 .
Solution: Using ancillae, we can prove

Conclusion

- Simplification of the original equational theory, in particular removed two intricate rules.
- Introducing new techniques to reason on quantum circuits.
- Extension of the completeness result to circuits with ancillae.
- In these extended settings, the equational theory is made only of equations acting on at most 3 qubits.
- Other contribution: extension of the completeness result to circuits with discard (where any oubit can he discarded)

Conclusion

- Simplification of the original equational theory, in particular removed two intricate rules.
- Introducing new techniques to reason on quantum circuits.
- Extension of the completeness result to circuits with ancillae.
- In these extended settings, the equational theory is made only of equations acting on at most 3 qubits.
- Other contribution: extension of the completeness result to circuits with discard (where any qubit can be discarded)

Conclusion

- Simplification of the original equational theory, in particular removed two intricate rules.
- Introducing new techniques to reason on quantum circuits.
- Extension of the completeness result to circuits with ancillae.
- In these extended settings, the equational theory is made only of equations acting on at most 3 qubits.
- Other contribution: extension of the completeness result to circuits with discard (where any qubit can he discarded)

Conclusion

- Simplification of the original equational theory, in particular removed two intricate rules.
- Introducing new techniques to reason on quantum circuits.
- Extension of the completeness result to circuits with ancillae.
- In these extended settings, the equational theory is made only of equations acting on at most 3 qubits.
- Other contribution: extension of the completeness result to circuits with discard (where any qubit can be discarded)

Conclusion

- Simplification of the original equational theory, in particular removed two intricate rules.
- Introducing new techniques to reason on quantum circuits.
- Extension of the completeness result to circuits with ancillae.
- In these extended settings, the equational theory is made only of equations acting on at most 3 qubits.
- Other contribution: extension of the completeness result to circuits with discard (where any qubit can be discarded).

Ongoing work [arXiv:2311.07476]

Replace the big rule by something simple.

Prove the minimality of the resulting equational theory.
Theorem (Vinimality)
Each equation of the equational theory is necessary.

Ongoing work [arXiv:2311.07476]

Replace the big rule by something simple.

Prove the minimality of the resulting equational theory.
Theorem (Minimality)
Each equation of the equational theory is necessary.

Thanks

https://doi.org/10.4230/LIPIcs.CSL. 2024.20

Quantum Circuit Completeness: Extensions and Simplifications
Alexandre Clément, Noé Delorme, Simon Perdrix, and Renaud Vilmart

