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What is it all about?

Quantum circuits are a rigourous graphical representation of quantum al-

gorithms.

P(π)

H

H

Just like boolean circuits are a rigourous graphical representation of clas-

sical algorithms.
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Quantum circuits as a graphical language

Quantum circuits are generated by

H , P(φ) , , φ

and can be composed sequentially with ◦ and in parallel with ⊗ as

◦ = and P(φ) ⊗ =
P(φ)

to form new circuits.(
◦
(

⊗ H
))

=
H
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Quantum circuits as a graphical language

Formally, graphical languages are defined within the prop formalism with

some deformation rules such that

P(φ) ◦ = P(φ) or =

This framework captures the intuitive behaviour of wires by ensuring that

circuits are defined “up to deformation”.

H

P(π2 )

=

H P(π2 )
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Other usual gates as shortcut notations

There are only four different kinds of generators

H , P(φ) , , φ

Other gates can be defined as shortcut notations.

RX (θ) := H P(θ)

−θ/2
H

P(φ)

:= P(φ2 )

P(φ2 ) P(-φ2 )
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Standard interpretation of quantum circuits

Interpretation

JC2 ◦ C1K = JC2K ◦ JC1K JC1 ⊗ C2K = JC1K ⊗ JC2K

J K = (1) J φ K = (e iφ)

J K = ( 1 0
0 1 )

q
H

y
= 1/

√
2
(
1 1
1 −1

) q
P(φ)

y
=
(
1 0
0 e iφ

)
s {

=

(
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

) s {
=

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

circuits ̸= matrices
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Motivations

Distinct circuits can have the same interpretation.

u

v
P(π2 )

P(π2 )

P(-π2 )

}

~ =

u

v
HH

}

~ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



Given a quantum algorithm, which circuit is the best?

Motivations:

- Resource optimisation (for instance the number of gates).

- Hardware-constraint satisfaction (for instance topological constraints).

- Verification, circuit equivalence testing.
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Using equations to transform circuits

We can use simple axioms such that,

H H
(H2)
= ,

P(φ)

(G)
=

P(φ)

and
HH

(CZ)
=

P(π2 )

P(π2 )

P(-π2 )

to derive new equations. For instance,

H

H

(H2)
=

H

HHH

(CZ)
=

H

P(π2 )H

P(π2 )

P(-π2 )

(G)
=

H

P( π
2)H

P(π2 ) P(-π2 ) (CZ)
=

H

H

HH (H2)
=

H

H
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Complete and sound equational theory

Is there an equational theory (i.e. a set of axioms) Γ from which we can

derive any true equation and only true equations?

Soundness

Any derivable equation is true.

∀C1,C2 : Γ ⊢ C1 = C2 =⇒ JC1K = JC2K

Completeness

Any true equation is derivable.

∀C1,C2 : JC1K = JC2K =⇒ Γ ⊢ C1 = C2

Previous work [Clément,Heurtel,Mansfield,Perdrix,Valiron LICS’23]:

The first complete and sound equational theory.
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Complete and sound equational theory [CHMPV LICS’23]

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

=
P(φ)

=
P(φ)

=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)
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Some easy and some intricate equations
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First contribution

Simplification of the equational theory
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Simplifications

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

=
P(φ)

=
P(φ)

=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

11 / 17



Simplifications

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

=
P(φ)

=
P(φ)

=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

11 / 17



Simplifications

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

=
P(φ)

=
P(φ)

=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

11 / 17



Simplifications

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

11 / 17



Simplifications

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

X
=

XX

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= =

RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′)H H

=
RX (-θ)

RX (θ)

RX (θ
′)

RX (θ
′) HH

H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

=
H

RX (-θ)

RX (θ)

H

RX (θ)

RX (-θ)

RX (θ
′)

RX (θ
′)

H

RX (-θ
′)

RX (-θ
′)

H

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

P(δ9)

11 / 17



Simplified complete and sound equational theory

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

Theorem (Completeness)

This equational theory is complete, i.e. any two equivalent circuits can

be transformed into each other.
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Second contribution

Extension of the equational theory

12 / 17



Extension to quantum circuits with ancillae

Quantum circuits with ancillae are generated by

H , P(φ) , , φ

together with

and

respectively denoting qubit initialisation and qubit destruction.

(The generator can only be applied to qubits in the |0⟩-state.)

Semantics

We extend J·K with J K = |0⟩ and J K = ⟨0|.

Universal for isometries
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Equational theory for quantum circuits with ancillae

2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

= P(φ) = =

Theorem (Completeness)

Adding those three equations makes the equational theory complete for

quantum circuits with ancillae.
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2π = 0 = φ1 φ2 = φ1+φ2 H H = P(0) =

P(φ)
=

P(φ)
=

HH
=

P(π2 )

P(π2 )

P(-π2 )

H = P(π2 ) RX (
π
2 ) P(π2 ) RX (α1) P(α2) RX (α3) = P(β1)

β0
RX (β2) P(β3)

= RX (γ1)

P(γ2) RX (γ3)

RX (γ4)

=
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

= P(φ) = =

Proposition

The big rule can be replaced by its 2-qubits version, leading to an

equational theory acting on a bounded number of qubits.
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Alternative definition of multi-controlled gates

Mutli-controlled gates are defined inductively

P(φ)

= P(φ2 )

P(φ2 ) P(-φ2 )

Problem: Cannot apply inductive hypothesis as angles are divided by 2.

Solution: Using ancillae, we can prove

P(φ)

=

P(φ)
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Conclusion

• Simplification of the original equational theory, in particular removed

two intricate rules.

• Introducing new techniques to reason on quantum circuits.

• Extension of the completeness result to circuits with ancillae.

• In these extended settings, the equational theory is made only of

equations acting on at most 3 qubits.

• Other contribution: extension of the completeness result to circuits

with discard (where any qubit can be discarded).
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Ongoing work [arXiv:2311.07476]

Replace the big rule by something simple.

RX (γ1)

P(γ2) RX (γ3)

RX (γ4) =
P(δ1) P(δ2) RX (δ3)

RX (δ4)

P(δ5) RX (δ6) P(δ7)

P(δ8)

↓

P(2π)

=
·····

Prove the minimality of the resulting equational theory.

Theorem (Minimality)

Each equation of the equational theory is necessary.
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Thanks

https://doi.org/10.4230/LIPIcs.CSL.2024.20

Quantum Circuit Completeness: Extensions and Simplifications
Alexandre Clément, Noé Delorme, Simon Perdrix, and Renaud Vilmart
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